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Abstract

We propose a max-margin formulation for
the multi-label classification problem where
the goal is to tag a data point with a set of
pre-specified labels. Given a set of L labels, a
data point can be tagged with any of the 2L

possible subsets. The main challenge there-
fore lies in optimising over this exponentially
large label space subject to label correlations.

Existing solutions take either of two ap-
proaches. The first assumes, a priori, that
there are no label correlations and indepen-
dently trains a classifier for each label (as is
done in the 1-vs-All heuristic). This reduces
the problem complexity from exponential to
linear and such methods can scale to large
problems. The second approach explicitly
models correlations by pairwise label interac-
tions. However, the complexity remains ex-
ponential unless one assumes that label cor-
relations are sparse. Furthermore, the learnt
correlations reflect the training set biases.

We take a middle approach that assumes la-
bels are correlated but does not incorporate
pairwise label terms in the prediction func-
tion. We show that the complexity can still
be reduced from exponential to linear while
modelling dense pairwise label correlations.
By incorporating correlation priors we can
overcome training set biases and improve pre-
diction accuracy. We provide a principled in-
terpretation of the 1-vs-All method and show
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that it arises as a special case of our formu-
lation. We also develop efficient optimisation
algorithms that can be orders of magnitude
faster than the state-of-the-art.

1. Introduction

The objective in multi-label classification is to predict
a set of relevant binary labels for a given input. A key
aspect is dealing with the exponentially large power
set of labels subject to label correlations. This is in
contrast to multi-class classification where one has to
predict just the single, most probable label.

Existing methods for multi-label classification take one
of two approaches. In the first, labels are a priori as-
sumed not to be correlated so that a predictor can
be trained for each label independently (as is done in
the popular 1-vs-All heuristic). This reduces train-
ing and prediction complexity from exponential in the
number of labels to linear. In the second, label cor-
relations are explicitly taken into account by incorpo-
rating pairwise, or potentially even higher order, label
interactions. However, inference is intractable unless
one assumes that labels are sparsely correlated. Exact
inference might also not be possible in the presence
of loops and most work has focused on hierarchical
tree structured labels. Furthermore, label correlation
weights are estimated from the training set alone and
prior knowledge is rarely incorporated.

In this paper, we focus on the case where the la-
bels are densely correlated and where the label cor-
relations found during training might be very differ-
ent from those found during testing. This is a com-
mon setting in image and video search where one has
to frequently recognise categories for which training
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data is unavailable. For instance, to recognise ob-
jects without requiring any labeled examples of the
test categories, (Lampert et al., 2009) proposed an
attribute based multi-label system which needs only
prior knowledge about how attributes co-occur in the
test categories. Existing multi-label methods are un-
suitable in such scenarios.

We propose a max-margin multi-label (M3L) formula-
tion where correlated, rather than independent, pre-
dictors are learnt but where pairwise label terms are
not incorporated in the prediction function. We show
that, for a problem with L labels and N training data
points, the M3L formulation can be reduced from hav-
ing N2L constraints to NL constraints. The formula-
tion generalises existing approaches which assume in-
dependence, such as 1-vs-All, and provides a principled
way of interpreting them. Furthermore, by sacrificing
some modelling power as compared to explicit meth-
ods, the formulation can handle dense, loopy label cor-
relations and incorporate prior knowledge efficiently.

We develop specialised algorithms for optimising the
M3L formulation and demonstrate that they can be
orders of magnitude faster than existing cutting plane
methods (Tsochantaridis et al., 2005). In particu-
lar, for kernelised M3L, while a straight forward
SMO based implementation would have taken time
quadratic in the number of labels, our algorithm can
train in linear time. By efficient kernel caching, we can
sometimes even be an order of magnitude faster than
1-vs-All. Thus our code, available from (M3L), should
also be very useful for learning independent 1-vs-All
classifiers. For linear M3L, we demonstrate that we
can train on the RCV1 dataset with 781,265 points
and 103 labels in effectively six minutes and fully con-
verge in eighteen. In terms of performance, we show
that incorporating prior correlation information using
the M3L formulation can substantially boost predic-
tion accuracy over independent methods.

2. Related Work

Most multi-label approaches proposed in the literature
try and reduce the problem to a more “canonical” one
such as regression, multi-class and binary classification
and ranking. We review such independent methods as
well as those that take label correlations into account.

In regression methods (Ji et al., 2008; Hsu et al.,
2009; Tsoumakas & Katakis, 2007), the label space is
mapped onto a vector space (which might sometimes
be a shared subspace of the feature space) where re-
gression techniques can be applied straight forwardly.
The primary advantage of such methods is that they

can be extremely efficient if the mapped label space has
significantly lower dimensionality than the original la-
bel space (Hsu et al., 2009). The disadvantage of such
approaches is that the choice of an appropriate map-
ping might be unclear. As a result, minimising regres-
sion loss functions, such as square loss, in this space
might be very efficient but might not be strongly cor-
related with minimising the desired multi-label loss.
Furthermore, classification involves inverting the map
which might not be straight forward, result in multiple
solutions and might involve heuristics.

A multi-label problem with L labels can be viewed as
a classification problem with 2L classes (McCallum,
1999; Boutell et al., 2004) and standard multi-class
techniques can be brought to bear. Such an approach
was shown to give the best empirical results in the
survey by (Tsoumakas & Katakis, 2007). Apart from
computational costs, one of the main drawbacks of
this approach is that most classes will have no positive
training data and these label combinations can not be
recognised at test time. Furthermore, the multi-class
0/1 loss is a poor approximation to the desired multi-
label loss. For instance, the 0/1 loss would charge the
same penalty for getting all but one of the labels right
as it would for getting none of the labels right.

Binary classification can be leveraged by replicating
the feature vector for each data point L times. For
copy number l, an extra dimension is added to the
feature vector with value l and the training label is +1
if label l is present in the label set of the original point
and -1 otherwise. Due to the data replication, apply-
ing a binary classifier naively would be computation-
ally costly and would require that complex decision
boundaries be learnt. However, (Schapire & Singer,
2000) show that the problem can be solved efficiently
using Boosting. A somewhat related technique is 1-
vs-All (Rifkin & Khautau, 2004) which independently
learns a binary classifier for each label. As we’ll show
in Section 3, our formulation generalises 1-vs-All to
handle label correlations.

A ranking based solution was proposed
in (Elisseeff & Weston, 2001). The objective was
to ensure that, for every data point, all the relevant
labels were ranked higher than any of the irrelevant
ones. Determining the number of labels to predict for
a novel point can be problematic. Some approaches
address the issue by training an independent regressor
while others introduce a dummy label. Posing the
problem as ranking also induces a quadratic number of
constraints per example which leads to a harder opti-
misation. This is ameliorated in (Crammer & Singer,
2003) who reduced the space complexity to linear and
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time complexity to sub-quadratic.

Most of the approaches mentioned above do not explic-
itly model label correlations ((McCallum, 1999) has a
generative model which can, in principle, handle cor-
relations but greedy heuristics are used to search over
the exponential label space). In terms of discrimi-
native methods, most work has focused on hierarchi-
cal tree, or forest, structured labels. Methods such
as (Cai & Hofmann, 2007; Cesa-Bianchi et al., 2006)
optimise a hierarchical loss over the tree structure but
do not incorporate pairwise, or higher order, label in-
teraction terms. For instance, (Cai & Hofmann, 2007)
classify at only the leaf nodes by leveraging the ranking
method of (Elisseeff & Weston, 2001). The M3N for-
mulation of (Taskar et al., 2003) was the first to sug-
gest max-margin learning of label interactions. Learn-
ing is exact and efficient for trees and approximate, in
general, for loopy graph structures. However, learning
is intractable for densely correlated labels. While the
M3N formulation dealt with the Hamming loss, a more
suitable hierarchical loss was introduced and efficiently
optimised in (Rousu et al., 2006).

Finally, (Tsochantaridis et al., 2005) propose an itera-
tive, cutting plane algorithm for learning in general
structured output spaces. The algorithm adds the
worst violating constraint to the active set in each it-
eration and is proved to take a maximum number of
iterations independent of the size of the output space.
While this algorithm can be used to learn pairwise la-
bel interactions it too can’t handle a fully connected
graph as the worst violating constraint can not be gen-
erally found in polynomial time. However, it can be
used to learn our proposed M3L formulation but is an
order of magnitude slower than the specialised optimi-
sation algorithms we develop.

3. M3L: The Max-Margin Multi-Label

Classification Primal Formulation

The objective in multi-label classification is to learn a
function f which can be used to assign a set of labels
to a point x. We assume that N training data points
have been provided of the form (xi,yi) ∈ R

D ×{±1}L

with yil being +1 if label l has been assigned to point
i and −1 otherwise.

A principled way of formulating the problem would
be to take the loss function ∆ that one truly cares
about and minimise it over the training set subject
to regularisation or prior knowledge. Of course, since
direct minimisation of most discrete loss functions is
hard, we might end up minimising an upper bound on
the loss, such as the hinge. The learning problem can

then be formulated as the following primal

P1 = min
f

1

2
‖f‖2 + C

N
∑

i=1

ξi (1)

s. t. f(xi,yi) ≥ f(xi,y) + ∆(yi,y) − ξi

∀i,y ∈ {±1}L \ {yi} (2)

ξi ≥ 0 ∀i (3)

with a new point x being assigned labels according
to y∗ = argmaxy f(x,y). The drawback of such a for-

mulation is that there are N2L constraints which make
direct optimisation very slow. Furthermore, classifica-
tion of novel points requires 2L function evaluations
(one for each possible value of y), which can be pro-
hibitive at run time. In this section, we demonstrate
that, under general assumptions of linearity, (P1) can
be reformulated as the minimisation of L densely cor-
related sub-problems each having only N constraints.
At the same time, prediction cost is reduced to a single
function evaluation (with complexity linear in L).

We start by making the standard assumption that
f(x,y) = wt(φ(x) ⊗ ψ(y)) where φ and ψ are the
feature and label space mappings respectively, ⊗ is
the Kronecker product and wt denotes w transpose.
To incorporate prior knowledge and correlate classi-
fiers efficiently, we assume that labels have at most
linear, possibly dense correlation so that it is sufficient
to choose ψ(y) = Py where P is an invertible matrix
encoding all our prior knowledge about the labels.

To reduce the number of constraints from expo-
nential to linear, we make another standard as-
sumption of restricting ourselves to modelling loss
functions that decompose over the individual la-
bels (Taskar et al., 2003). Hence, we require that

∆(yi,y) =
∑L

l=1
∆l(yi, yl) where yl ∈ {±1} corre-

sponds to label l in the set of labels represented by
y. For instance, the popular Hamming loss, amongst
others, satisfies this condition. The Hamming loss
∆(yi,y), between a ground truth label yi and a pre-
diction y is given by ∆(yi,y) = yt

i(yi − y) which is
a count of twice the total number of individual labels
mispredicted in y. Note that the Hamming loss can be
decomposed over the labels as ∆(yi,y) =

∑

l 1−ylyil.
Of course, for ∆ to represent a sensible loss we also
require that ∆(yi,y) ≥ ∆(yi,yi) = 0.

Under these assumptions, (P1) can be expressed as

P1 ≡ min
w

1

2
wtw + C

N
∑

i=1

max
y∈{±1}L

[∆(yi,y)+

wtφ(xi) ⊗ P(y − yi)] (4)
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where the constraints have been moved into the objec-
tive and ξi ≥ 0 eliminated by including y = yi in the
maximisation. To simplify notation, we express the
vector w as a D × L matrix W so that

P1 ≡ min
W

1

2
Trace(WtW) + C

∑

i

max
y

[∆(yi,y)+

(y − yi)
tPtWtφ(xi)] (5)

Substituting Z = WP, R = PtP ≻ 0 and using the
identity Trace(ABC) = Trace(CAB) results in

P1 ≡ min
Z

1

2

L
∑

l=1

L
∑

k=1

R−1

lk zt
lzk + C

∑

i

max
y

[

L
∑

l=1

[∆l(yi, yl) + (yl − yil)z
t
lφ(xi)]

]

(6)

where zl is the lth column of Z. Note that the terms
inside the maximisation break up independently over
the L components of y. It is therefore possible to
interchange the maximisation and summation to get

P1 ≡ min
Z

1

2

L
∑

l=1

L
∑

k=1

R−1

lk zt
lzk + C

∑

i

L
∑

l=1
[

max
yl∈{±1}

[∆l(yi, yl) + (yl − yil)z
t
lφ(xi)]

]

(7)

This leads to an equivalent primal formulation (P2) as
the summation of L correlated problems, each having
N constraints which is significantly easier to optimise.

P2 =

L
∑

l=1

Sl (8)

Sl = min
Z,ξ

1

2
zt

l

L
∑

k=1

R−1

lk zk + C

N
∑

i=1

ξil (9)

s. t. 2yilz
t
lφ(xi) ≥ ∆l(yi,−yil) − ξil (10)

ξil ≥ ∆l(yi, yil) (11)

Furthermore, a novel point x can be assigned the set
of labels for which the entries of sign(Ztφ(x)) are +1.
This corresponds to a single function evaluation as
compared to the 2L in the original case.

Note that the L classifiers in Z are not independent
but correlated by R – a positive definite matrix en-
coding our prior knowledge about label correlations.
Depending on the application, R can be dense and
even have negative entries. Due to this, the number
of constraints would have remained exponential had
we made f quadratic in y by explicitly including pair-
wise terms as in (Taskar et al., 2003). Also, note that

we deliberately chose not to include bias terms b in
f even though the reduction from (P1) to (P2) would
still have gone through and the resulting kernelised op-
timisation been more or less the same (see Section 6.1).
However, we would then have had to regularise b and
correlate it using R. Otherwise b would have been a
free parameter capable of undoing the effects of R on
Z. Therefore, rather than explicitly have b and regu-
larise it, we implicitly simulate b by adding an extra
dimension to the feature vector. This has the same
effect while keeping optimisation simple.

Equivalence with 1-vs-All If label correlation in-
formation is not included, i. e. R = I, then (P2) decou-
ples into L completely independent sub-problems each
of which can be tackled in isolation. In particular, for
the Hamming loss we get

Sl = min
zl,dl,ξ

1

2
zt

lzl + 2C

N
∑

i=1

ξi (12)

s. t. yilz
t
lφ(xi) ≥ 1 − ξi (13)

ξi ≥ 0 (14)

Thus, Sl reduces to an independent binary classifica-
tion sub-problem where the positive class contains all
training points tagged with label l and the negative
class containing all other points. This is exactly the
strategy used in the popular 1-vs-All heuristic and we
can therefore now make explicit the assumptions un-
derlying this technique. The only difference is that one
should charge a misclassification penalty of 2C to be
consistent with the original primal formulation.

4. The M3L Dual Formulation

The dual of (P2) has similar properties in that it can
be viewed as the maximisation of L related problems
which decouple into independent binary SVM classi-
fication problems when R = I. The dual is easily
derived if we rewrite (P2) in vector notation. Defin-
ing Yl = diag([y1l, . . . , yNl]), Kx = φt(X)φ(X) and
∆±

l = [∆l(y1,±y1l), . . . ,∆l(yN ,±yNl)]
t we get the

following Lagrangian

L =

L
∑

l=1

( 1

2

L
∑

k=1

R−1

lk zt
lzk + C1tξl − β

t
l(ξl − ∆+

l )

−αt
l(2Ylφ

t(X)zl − ∆−
l + ξl)) (15)

with the optimality conditions being

∇zl
L = 0 ⇒

L
∑

k=1

R−1

lk zk = 2φ(X)Ylαl (16)

∇ξl
L = 0 ⇒ C1 −αl − βl = 0 (17)
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Substituting these leads to the following dual

D2 = max
0≤α≤C1

L
∑

l=1

αt
l(∆

−
l − ∆+

l )

− 2

L
∑

l=1

L
∑

k=1

Rlkα
t
lYlKYkαk (18)

5. Optimisation

The M3L dual is similar to the standard SVM dual.
Existing optimisation techniques can therefore be
brought to bear. However, the dense structure of R

couples all NL dual variables and simply porting ex-
isting solutions leads to very inefficient code. We show
that, with book keeping, we can easily go from an
O(L2) algorithm to an O(L) algorithm. Furthermore,
by re-utilising the kernel cache, our algorithms can be
very efficient even for non-linear problems. We treat
the kernelised and linear M3L cases separately.

5.1. Kernelised M3L

We optimise the M3L dual using coordinate ascent
with second order variable selection. Two dual vari-
ables are chosen for optimisation at every iteration.
The first variable is chosen to be the one with the
maximum projected gradient magnitude. The second
is chosen so as to maximise second order dual progress.
We maintain gradients ∇αD2 (where D2 is now over-
loaded to mean the dual objective) in order to pick
variables efficiently. After optimisation the dual vari-
able αil, all gradients need to be updated as

∇
new
αjk

D2 = ∇
old
αjk

D2 − 4yilyjkRklKij(α
new
il − αold

il )

For dense R this implies an inefficient O(L2) algorithm
as NL gradients need to be updated in each iteration.
To mitigate this problem, we optimise along a single
label for L consecutive iterations maintaining gradi-
ents for only that label. Now switching to the label
with the maximal dual progress might seem difficult
as gradients for the other labels haven’t been main-
tained. However, by simple book keeping, all the other
gradients can be updated in O(NL) time as

∇
new
αjk

D2 = ∇
old
αjk

D2 − 4yjkRklujl (19)

where ujl =
∑N

i=1
yilKij(α

new
il − αold

il ) and l indexes
the label along which we have been optimising. This
leads to an efficient O(L) algorithm with dramatically
reduced runtime even though slightly more iterations
were needed for convergence (see (M3L) for a proof).
We also employed an effective kernel cache.

5.2. Linear M3L

We build on top of the dual coordinate ascent algo-
rithm of (Hsieh et al., 2008). While a set of active
points is still maintained we no longer maintain gra-
dients or a cache. During each pass over the active
set, dual variables are randomly picked and optimised
analytically. Points at bound having gradient mag-
nitudes outside the range of currently maintained ex-
tremal gradients are discarded. Extremal gradients
are re-estimated at the end of each pass and if they
are too close to each other the active set is expanded
to include all training points.

A straight forward implementation with globally main-
tained extremal gradients again leads to slow training.
Essentially, if the classifier for a particular label has
not yet converged, then it can force a large active set
even though most points would not be considered by
the other classifiers. We therefore implemented sepa-
rate active sets for each label but coupled the main-
tained extremal gradients via R. This was empirically
found to decrease training time.

6. Experiments

In this section we first compare the performance of our
optimisation algorithms and then evaluate how predic-
tion accuracy can be improved by incorporating prior
knowledge about label correlations.

6.1. Optimisation Experiments

The cutting plane algorithm in SVMStruct
(Tsochantaridis et al., 2005) is an excellent gen-
eral purpose algorithm that can be used to optimise
the original M3L formulation (P1). In each iteration,
the approximately worst violating constraint is added
to the active set and the algorithm is proved to take
a maximum number of iterations independent of the
size of the output space. The algorithm has a user
defined parameter ǫ for the amount of error that can
be tolerated in finding the worst violating constraint.

We compared the SVMStruct algorithm to our M3L
implementation on an Intel Xeon 2.67 GHz machine
with 8GB RAM. Even on medium scale problems with
linear kernels, our M3L implementation was nearly a
hundred times faster than SVMStruct. For example,
on the Media Mill dataset (Snoek et al., 2006) with
101 labels and ten, fifteen and twenty thousand train-
ing points, our M3L code took 19, 37 and 55 seconds
while SVMStruct took 1995, 2998 and 7198 seconds
respectively. On other datasets SVMStruct ran out of
RAM or failed to converge in a reasonable amount of
time (even after tuning ǫ). This demonstrates that ex-
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Table 1. Timing results for our linear M3L (LM3L) and kernelised M3L (KM3L) optimisation algorithms on datasets with
N training points, D features and L labels. See text for details.

(a) Animals with Attributes: D=252, L=85.

N
Linear Kernel (s) RBF Kernel (s)

1-vs-All LibLinear LM3L 1-vs-All LibSVM KM3L 1-vs-All LibSVM KM3L
2,000 3 7 234 15 250 20
10,000 48 51 5438 245 6208 501
15,000 68 74 11990 500 13875 922
24,292 102 104 29328 1087 34770 3016

(b) RCV1: D=47,236(sparse), L=103.

N
Linear Kernel (s) RBF Kernel (s)

1-vs-All LibLinear LM3L 1-vs-All LibSVM KM3L 1-vs-All LibSVM KM3L
2,000 7 4 54 6 139 11
10,000 23 27 743 110 1589 177
15,000 33 43 1407 230 2893 369
23,149 45 57 2839 513 5600 817

(c) Siam: D=30,438(sparse), L=22.

N
Linear Kernel (s) RBF Kernel (s)

1-vs-All LibLinear LM3L 1-vs-All LibSVM KM3L 1-vs-All LibSVM KM3L
2,000 1 1 27 5 43 7
10,000 2 2 527 126 775 185
15,000 3 3 1118 288 1610 422
21,519 5 5 2191 598 3095 878

(d) Media Mill: D=120, L=101.

N
Linear Kernel (s) RBF Kernel (s)

1-vs-All LibLinear LM3L 1-vs-All LibSVM KM3L 1-vs-All LibSVM KM3L
2,000 2 2 11 2 15 6
10,000 18 19 456 57 505 123
15,000 35 37 1014 124 1107 275
25,000 62 75 2662 337 2902 761
30,993 84 97 4168 527 4484 1162

plicitly reducing the number of constraints from expo-
nential to linear and implementing a specialised solver
can lead to a dramatic reduction in training time.

As the next best thing, we benchmark our perfor-
mance against the 1-vs-All method, even though it
can’t learn correlated classifiers. In the linear case,
we compare to 1-vs-All trained by running LibLin-
ear (Fan et al., 2008) and LibSVM (Chang & Lin,
2001) independently over each label. For non-linear
kernels we compare to 1-vs-All trained using LibSVM.
In each case, we set R = I, so that M3L reaches exactly
the same solution as LibSVM and LibLinear. Also, we
avoided repeated disk I/O by reading the data into
RAM and using LibLinear and LibSVM’s API’s.

Table 1 lists the variation in training time with
the number of training examples on the Ani-

mals with Attributes (Lampert et al., 2009), Me-
dia Mill (Snoek et al., 2006), Siam (SIA) and
RCV1 (Lewis et al., 2004) datasets. The training
times of linear M3L (LM3L) and LibLinear are compa-
rable, with LibLinear being slightly faster. The train-
ing time of kernelised M3L (KM3L) are significantly
lower than LibSVM, with KM3L sometimes being as
much as 30 times faster. This is because KM3L can
efficiently leverage the kernel cache across all labels
while LibSVM has to build the cache from scratch each
time. This isn’t an issue in linear M3L and LibLinear
as no kernel cache is maintained. Thus, even though
M3L generalises 1-vs-All, its training time can be com-
parable, and sometimes, even significantly lower.

Finally, to demonstrate that our code scales to large
problems, we train linear M3L on RCV1 with 781,265
points and 103 labels. Table 2 charts dual progress
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Table 2. Linear M3L training on RCV1.

Time(s) Dual Train Error(%) Test Error(%)
60 1197842 0.86 0.98
183 1473565 0.74 0.84
300 1492664 0.72 0.83
338 1494012 0.72 0.82
345 1494050 0.72 0.82
353 1494057 0.72 0.82
1080 1494057 0.72 0.82

and train and test error with time. As can be seen,
the model is nearly fully trained in under six minutes
and converges in eighteen.

6.2. Incorporating Prior Knowledge

An interesting scenario, which has only recently been
introduced in computer vision, is of recognising ob-
ject categories that have never been seen during train-
ing but about whom prior information might be avail-
able (Lampert et al., 2009). If the training and test
categories share a common set of object attributes,
and the attributes for each test category are known a

priori, then (Lampert et al., 2009) show how a multi-
label system can be used to predict significantly better
than chance. We investigate whether basic attribute
prediction can be improved if the distribution of test
categories is also known a priori.

The Animals with Attributes dataset (Lampert et al.,
2009) has 40 training animal categories and 10 dis-
joint test animal categories which share a common
set of 85 attributes. The attributes are densely cor-
related and form a fully connected graph. Each im-
age in the database contains a dominant animal and
is labelled with its 85 attributes. There are 24,292
training images and 6,180 test images. We use 252
dimensional PHOG features that are provided by the
authors. Training times are reported in Table (1a).

We start by visualising the influence of R. We ran-
domly sample 200 points from the training set and
discard all but two of the attributes – “black” and
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Figure 1. Test Hamming loss versus classifier correlation.

“weak”. These two attributes were selected as they
are very weakly correlated on our training set, with
a correlation coefficient of 0.2, but have a strong neg-
ative correlation of -0.76 on the test animals (Leop-
ards, Giant Pandas, Humpback Whales, etc). Fig-
ure 1 plots the Hamming loss on the test set as we set
R = [1 r; r 1], plug it into the M3L formulation, and
vary r from -1 to +1. Learning independent classifiers
for the two attributes (r = 0) can lead to a Hamming
loss of 25% because of the mismatch between train-
ing and test sets. This can be made even worse by
choosing an incorrect prior that forces the two classi-
fiers to be correlated (r = +1). However, if our priors
are generally correct, then negatively correlating the
classifiers lowers prediction error.

We now evaluate performance quantitatively on the
same training set but with all 85 labels. For the
M3L formulation we set R =

∑10

c=1
p(c)ycy

t
c where

yc is the known attribute vector for test category c

and p(c) is the probability of occurrence of class c

during testing (which we require as additional prior
information). Under this setup, learning indepen-
dent classifiers using 1-vs-All yields a Hamming loss
of 29.38%. The Hamming loss for M3L, with the spe-
cific choice of R, is 26.35%. This decrease in error
is very significant given that 1-vs-All, trained on all
24,292 training points, only manages to reduce error to
28.64%. Thus M3L, with extra knowledge, in the form
of just test category distributions, can dramatically re-
duce test error. The results also compare favourably
to other independent methods such as BoostTex-
ter (Schapire & Singer, 2000) (30.28%), power set
multi-class classification (32.70%), 5 nearest neigh-
bours (31.79%), regression (Hsu et al., 2009) (29.38%)
and ranking (Crammer & Singer, 2003) (34.84%).

Benchmark Datasets Our interest is in multi-label
problems where the training set statistics do not reflect
the test set statistics. Unfortunately, most benchmark
datasets do not have this property. We therefore take
the Siam, Media Mill and RCV1 datasets and create
train and test splits where the labels are correlated dif-

Table 3. Test Hamming loss (%) on benchmark datasets.

Method Siam Media Mill RCV1
M3L 8.41 3.78 3.45

1-vs-All 11.15 4.69 4.25
BoostTexter 12.91 4.91 4.12

Power Set 14.01 6.27 3.71
Regression 11.19 4.69 4.26

Ranking 9.41 9.06 5.67
5-NN 12,51 4.74 4.47
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ferently. The R matrix, encoding label correlation in-
formation, is estimated from a disjoint third set whose
points are not used for training. Table 3 compares the
performance of various methods. In these scenarios, it
would appear that M3L can consistently leverage prior
knowledge to outperform independent methods.

7. Conclusions

We developed the M3L formulation for learning max-
margin multi-label classification with prior knowledge
about densely correlated labels. We showed that the
number of constraints could be reduced from exponen-
tial to linear and, in the process, generalised 1-vs-All
classification. We also developed efficient optimisation
algorithms that were orders of magnitude faster than
the standard cutting plane method. Our kernelised al-
gorithm was significantly faster than even 1-vs-All and
hence our code, available from (M3L), can also be used
for efficient independent learning. Finally, we demon-
strated that incorporating prior knowledge using M3L
could improve prediction accuracy over independent
methods and that M3L trained on 200 points could
outperform 1-vs-All trained on nearly 25,000.

Acknowledgements

We would like to thank Alekh Agarwal, Brendan Frey
and Sunita Sarawagi for helpful discussions.

References

M3L code and convergence proof http://research.
microsoft.com/~manik/code/M3L/download.html.

The SIAM Text Mining Competition 2007
http://www.cs.utk.edu/tmw07/).

Boutell, M., Luo, J., Shen, X., and Brown, C. Learning
multi-label scene classification. Pattern Recognition,
37(9):1757–1771, 2004.

Cai, L. and Hofmann, T. Exploiting known tax-
onomies in learning overlapping concepts. In IJCAI,
pp. 714–719, 2007.

Cesa-Bianchi, N., Gentile, C., and Zaniboni, L. In-
cremental algorithms for hierarchical classification.
JMLR, 7:31–54, 2006.

Chang, C.-C. and Lin, C.-J. LIBSVM: a library for

support vector machines, 2001. Software available at
http://www.csie.ntu.edu.tw/∼cjlin/libsvm.

Crammer, K. and Singer, Y. A family of additive on-
line algorithms for category ranking. JMLR, 3:1025–
1058, 2003.

Elisseeff, A. and Weston, J. A kernel method for multi-
labelled classification. In NIPS, pp. 681–687, 2001.

Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R.,
and Lin, C.-J. Liblinear: A library for large linear
classification. JMLR, 9:1871–1874, 2008.

Hsieh, C.-J., Chang, K.-W., Lin, C.-J., Keerthi, S. S.,
and Sundarajan, S. A dual coordinate descent
method for large-scale linear svm. In ICML, 2008.

Hsu, D., Kakade, S., Langford, J., and Zhang, T.
Multi-label prediction via compressed sensing. In
NIPS, 2009.

Ji, S., Sun, L., Jin, R., and Ye, J. Multi-label multiple
kernel learning. In NIPS, pp. 777–784, 2008.

Lampert, C. H., Nickisch, H., and Harmeling, S.
Learning to detect unseen object classes by between-
class attribute transfer. In CVPR, 2009.

Lewis, D., Yang, Y., Rose, T., and Li, F. RCV1: A
new benchmark collection for text categorization re-
search. JMLR, 5:361–397, 2004.

McCallum, A. Multi-label text classification with a
mixture model trained by EM. In AAAI 99 Work-

shop on Text Learning, 1999.

Rifkin, R. and Khautau, A. In defense of one-vs-all
classification. JMLR, 5:101–141, 2004.

Rousu, J., Saunders, C., Szedmak, S., and Shawe-
Taylor, J. Kernel-based learning of hierarchical mul-
tilabel classification models. JMLR, 7:1601–1626,
2006.

Schapire, R. E. and Singer, Y. Boostexter: A boosting-
based system for text categorization. ML, 39(2/3):
135–168, 2000.

Snoek, C., Worring, M., van Gemert, J., Geusebroek,
J.-M., and Smeulders, A. The challenge problem
for automated detection of 101 semantic concepts
in multimedia. In ACM Multimedia, pp. 421–430,
2006.

Taskar, B., Guestrin, C., and Koller, D. Max-margin
markov networks. In NIPS, 2003.

Tsochantaridis, I., Joachims, T., Hofmann, T., and Al-
tun, Y. Large margin methods for structured and in-
terdependent output variables. JMLR, 6:1453–1484,
2005.

Tsoumakas, G. and Katakis, I. Multi-label classifica-
tion: An overview. Int. Journal of Data Warehous-

ing and Mining, 3(3):1–13, 2007.

http://www.csie.ntu.edu.tw/~cjlin/libsvm

	Introduction
	Related Work
	M3L: The Max-Margin Multi-Label Classification Primal Formulation
	The M3L Dual Formulation
	Optimisation
	Kernelised M3L
	Linear M3L

	Experiments
	Optimisation Experiments
	Incorporating Prior Knowledge

	Conclusions

